

### 10º Ano - Física e Química A 2008/09

### Ficha de Trabalho 4

### Aquecimento/Arrefecimento de Sistemas

1. Para determinar a quantidade de energia necessária à mudança de estado físico da água, quando esta passa do estado sólido ao líquido, um grupo de alunos fez o seguinte ensaio: numa caixa isoladora, juntou 100,0g de água a 90,0 °C e 100,0g de gelo a 0,0 °C, tendo verificado que o valor final da temperatura da mistura foi de 5,1 °C.

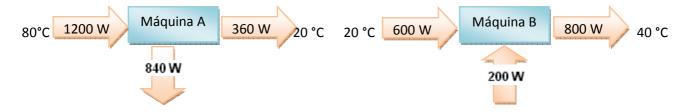
Admita que não ocorreu dissipação de energia para as vizinhanças e considere que a capacidade térmica mássica da água é 4186 J kg<sup>-1</sup> K<sup>-1</sup>.

Com base nos dados disponíveis, calcule a energia que foi utilizada na mudança de estado físico da massa de 100,0 g de gelo.

Apresente todas as etapas de resolução.



- 2. Das seguintes afirmações, indique, justificando, quais as verdadeiras e as falsas:
  - A. Nunca se pode converter completamente energia mecânica utilizável em energia térmica.
  - B. Nunca se pode converter completamente calor em trabalho.
  - C. É impossível transferir uma certa quantidade de energia sob a forma de calor um corpo com uma determinada temperatura para um corpo com uma temperatura mais elevada.
  - D. Uma máquina pode atingir o rendimento de 100%.
- 3. Explique por que razão um urso deitado sobre o gelo, o pode fundir, mas não consegue extrair dele energia para aumentar a sua temperatura.
- 4. De acordo com a 2ª Lei da Termodinâmica, um exemplo de processo irreversível é...

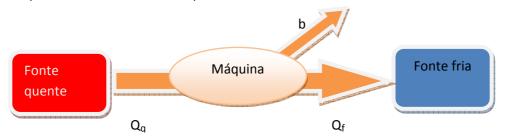

Seleccione a(s) opção(ões) incorrecta(s)

- A. ...um pêndulo a oscilar, desprezando a resistência do ar.
- B. ... o aquecimento de água por meio de uma resistência eléctrica.
- C. ...a realização de uma viagem de ida e volta.
- D. ...a compressão de um gás muito lentamente numa seringa lubrificada com a extremidade fechada dentro de um banho a uma certa temperatura.
- E. ...a libertação de energia através das reacções nucleares que ocorrem numa estrela.
- 5. Indique com setas o sentido da evolução dos processos que ligam os estados indicados. Justifique a sua opção.
  - a. Copo partido.....copo inteiro.
  - b. Sumo diluído.....água e sumo.
  - c. Vegetais crus.....sopa.
  - d. Argamassa.....areia, cimento e água.



## 10º Ano - Física e Química A 2008/09

- 6. Indique as afirmações verdadeiras:
  - A. Uma transformação é espontânea quando cede energia sob a forma de calor ao exterior.
  - B. Se, numa transformação, diminui a energia útil do sistema, ela é espontânea.
  - C. Não podem ocorrer transformações sem a realização de trabalho da vizinhança sobre o sistema.
  - D. É impossível prever se uma transformação é espontânea.
  - E. A transformação espontânea ocorre no sentido em que a matéria adquire um estado mais organizado.
- 7. Considere as transformações seguintes:
  - A. Derreter da neve;
  - B. Condensação do vapor de água formando as nuvens;
  - C. Cair de um copo;
  - D. Uma pessoa a subir uma encosta;
  - E. Saltitar de uma bola;
  - F. Oscilar de um pêndulo, desprezando a resistência do ar.
  - 7.1. Identifique as transformações que ocorrem com o aumento de entropia do sistema.
  - 7.2. Só uma transformação não é espontânea. Identifique-a.
  - 7.3. Justifique a espontaneidade da transformação B. Quando ocorre diminuição da temperatura há condensação de vapor de água e chove.
- 8. Complete correctamente as alíneas:
  - a) Uma máquina térmica transforma \_\_\_\_\_em\_\_\_\_. Este processo é \_\_\_\_\_porque há uma parte da energia térmica fornecida que não é possível utilizar.
  - b) A energia degrada-se quando passa de uma fonte \_\_\_\_\_\_ para uma fonte \_\_\_\_\_\_
- 9. São fornecidos 500 J a uma máquina térmica sob a forma de calor. Esta realiza um trabalho de 200 J.
  - 9.1. Calcule o rendimento da máquina.
- 10. Considere os diagramas energéticos de duas máquinas, representados na figura.




10.1. Classifique cada uma das máquinas. Justifique.



# 10º Ano - Física e Química A 2008/09

- 10.2. Determine o rendimento/eficiência da máquina A.
- 10.3. Calcule a energia que é necessário fornecer à máquina A para que funcione durante 3h.
- 11. Observe o esquema referente a uma máquina térmica:



- 11.1 Seleccione a opção que melhor corresponde ao tipo de máquina representado e à letra b do esquema.
  - A. Máquina térmica; b W < 0
  - B. Máquina frigorífica; b W > 0
  - C. Máquina térmica; b W > 0
  - D. Máquina frigorífica; b W > 0
- 11.2 A máquina apresentada no esquema anterior funciona com um rendimento de 30% quando a temperatura das duas fontes é diferente e realiza o trabalho de 2000 J.
- Calcule:
  - a. A quantidade de energia absorvida pela máquina sob a forma de calor.
  - b. O aumento de energia interna da fonte fria.
- 12. Com base no funcionamento de uma máquina térmica pode dizer-se que:

### Seleccione a opção correcta.

- A. O rendimento de uma máquina térmica é tanto maior quanto maior for a energia transferida sob a forma de calor.
- B. O rendimento de uma máquina térmica diminui com o aumento de calor fornecido à fonte fria, ao contrário do rendimento de uma máquina frigorífica que é directamente proporcional à energia, sob a forma de calor, fornecida à fonte fria.
- C. Uma máquina térmica fornece energia à fonte quente como trabalho.
- D. Sempre que numa máquina térmica ocorre transferência de energia que envolva a fonte quente, essa energia é aproveitada para realizar trabalho.



### 10º Ano - Física e Química A 2008/09

13. Além das máquinas térmicas, existem também as máquinas frigoríficas.

### Seleccione as opções incorrectas.

- A. Uma máquina frigorífica cede energia à fonte quente.
- B. O frigorífico funciona como uma máquina frigorífica que cede energia aos alimentos. Retira energia aos alimentos.
- C. O frigorífico cede energia sob forma de calor para o exterior.
- D. Um aparelho de ar condicionado que durante o Inverno produz calor funciona como uma máquina térmica. Funciona como uma máquina frigorífica.

#### 14. Leia atentamente o texto:

Estamos sempre a ouvir falar de poupar energia. Mas de acordo com a 1ª Lei da Termodinâmica, a energia é sempre conservada. O que significa então poupar energia se a quantidade total de energia no universo não é alterada, independentemente do que possamos ou não fazer? Na verdade, a 1ª Lei da Termodinâmica não nos conta a história toda. A energia conserva-se sempre, mas algumas formas de energia são mais úteis do que outras.

A possibilidade ou impossibilidade de utilizar energia é o assunto de que trata a 2º Lei da Termodinâmica. Por exemplo, é fácil converter completamente trabalho mecânico em energia térmica, mas é impossível remover energia térmica de um sistema e convertê-la completamente em trabalho mecânico, sem que quaisquer outras mudanças ocorram. Este facto experimental é um dos enunciados da 2ª Lei da Termodinâmica. Podemos encontrar muitas outras formulações desta mesma lei.

Adaptado de Tipler P. A., Physics for scientists and engineers,

4<sup>th</sup> edition, Freeman and Company, New York, 1999

- 14.1 Tendo em conta a informação apresentada, escreva um texto no qual explicite:
  - Os três modos possíveis de fazer variar a energia interna de um sistema, ou seja, as transferências de energia entre sistemas implícitas na 1ª Lei da Termodinâmica.
  - O sentido, do ponto de vista energético, em que os processos ocorrem espontaneamente na Natureza, de acordo com a 2ª Lei da Termodinâmica.
  - O modo como a 2ª Lei da Termodinâmica complementa a primeira.

14.2. É sabido que, quando corpos, que se encontram inicialmente a diferentes temperaturas, são colocados num determinado ambiente, acabam por ficar, ao fim de algum tempo, todos à mesma temperatura, atingindo uma situação de equilíbrio térmico entre si.

Indique qual é a lei implícita neste facto.